If cot²A(secA - 1)(1+cosA) = kcosA. Then find the value of k.
Answers
Answered by
1
Step-by-step explanation:
Given :-
cot²A(secA - 1)(1+cosA) = kcosA.
To find :-
Find the value of k ?
Solution :-
Given that :
cot²A(secA - 1)(1+cosA) = kcosA.
(CosA/SinA)²[(1/CosA)-1)](1+CosA)= kCos A
=>(Cos A/Sin A)² [(1-CosA)/CosA](1+CosA)
=kCosA
=>(CosA/SinA)²[(1-CosA)(1+CosA)/CosA]
= kCosA
=> (CosA/SinA)²[(1²-Cos²A)/CosA] = kCosA
Since (a+b)(a-b)=a²-b²
Where a = 1 and b = Cos A
=> (CosA/SinA)²[Sin²A/CosA] = kCosA
(Since Sin² A+ Cos² A = 1
=> Sin² A = 1 - Cos² A)
=>(Cos²A/Sin² A)(Sin² A/Cos A) = k Cos A
=>(Cos²A×Sin²A)/(Sin²A×CosA ) = k Cos A
On cancelling sin² A then
=> Cos² A / Cos A = k Cos A
=> Cos A = k Cos A
=> k Cos A = Cos A
=> k = Cos A / Cos A
=> k = 1
Therefore, k = 1
Answer:-
The value of k for the given problem is 1
Used formulae:-
- (a+b)(a-b)=a²-b²
- Sin² A+ Cos² A = 1
- Sin² A = 1 - Cos² A
- Sec A = 1 / Cos A
- Cot A = Cos A / Sin A
Similar questions
Computer Science,
1 month ago
Physics,
2 months ago
Economy,
2 months ago
Biology,
9 months ago
Math,
9 months ago