If cotA=1√3, show that sin'2 A√1- cos'2 A=3√5
Answers
Answered by
9
Answer:
LHS=(1+tan2A)2tanA+(1+cot2A)2cotA
(sec2A)2tanA+(cosec2A)2cotA
=cos4A1cosAsinA+sin4A1sinAcosA
=sinAcos3A+cosAsin3A
=sinAcosA[sin2A+cos2A]
=sinAcosA=RHS
Hence proved.
Step-by-step explanation:
Similar questions