Math, asked by swayamsudha07, 1 year ago

If cotA/1+cosecA-cotA/1-cosecA=K/cosA,then find the value of K​

Answers

Answered by DhanyaDA
21

GIVEN

\dfrac{cotA}{1+cosecA}-\dfrac{cotA}{1-cosecA}=\dfrac{k}{cosA}

TO FIND

The value of k

EXPLANATION

in the attachment

FORMULAS

 =  > (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 =  > cotx =  \dfrac{cosx}{sinx}

 =  > cosecx =  \dfrac{1}{sinx}

 =  >  {sin}^{2} x +  {cos}^{2} x = 1 \\  \\  {cos}^{2} x = 1 -  {sin}^{2} x

EXTRA INFORMATION

 =  >  {sec}^{2} x -  {tan}^{2} x = 1 \\  \\  =  >  {cosec}^{2} x -  {cot}^{2} x = 1

Attachments:
Answered by esheetasharma2004
4

Answer:

k = 2

Step-by-step explanation:

Multiply by cos A and factor out cot A.  Also handier to change signs of numerator and denominator in second term:

k = cos A cot A ( 1 / ( cosec A + 1 )   +   1 / ( cosec A - 1 ) )

Change everything to cos A and sin A.  Distribute the 1 / sin A (from the cot A) over the terms:

k = cos² A ( 1 / ( 1 + sin A )  +  1 / ( 1 - sin A ) )

= cos² A ( 1 - sin A + 1 + sin A ) / ( 1 - sin² A )

= cos² A ( 2 ) / cos² A

= 2

Similar questions