if cotA=17/18, then evaluate (1+sinA)(1-sinA)/(1+cosA)1-cosA)
Answers
Answered by
28
I think it helps you to solve your question
Attachments:
Answered by
4
Answer:
(1+sinA)(1-sinA)/(1+cosA)1-cosA) = 289/324
Step-by-step explanation:
Given : If CotA = 17/18
To evaluate : (1+sinA)(1-sinA)/(1+cosA)1-cosA)
Solution :
(1 + SinA)(1 - SinA) / (1 + CosA)(1 - CosA)
= 1 - Sin^2 A / 1 - Cos^2 A
Since, (a + b)(a - b) = a^2 - b^2 (formula)
= Cos^2 A / Sin^2 A
Since, (Sin^2 A + Cos^2 A = 1) (formula)
= (CosA / SinA)^2
= (Cot)^2
Putting the value of given 'Cot A', we get
= (17/18)^2
= 289/324.
Therefore, Required result is
(1+sinA)(1-sinA)/(1+cosA)1-cosA) = 289/324
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Science,
7 months ago
Math,
1 year ago
Science,
1 year ago
Math,
1 year ago
Political Science,
1 year ago