Math, asked by rehmanziaur633, 10 months ago


If cota = 2, find all the values of all T-
ratio ofQ​

Answers

Answered by bhargavaram983
0

cot A = 2

⇒the adjacent side of A = 2

⇒the opposite side of A = 1

⇒the hypotenuse is √5

sinA = 1/√5

cos A = 2/√5

tan A = 1/2

sec A = √5/2

cosecA = √5

Cot A = 2

HOPE THE ANSWER HELPS YOU.

DON'T FORGET TO THANK AND MARK AS THE BRAINLIEST.

Answered by Diabolical
0

Answer:

The answer will be :

Sin A = \frac{1}{\sqrt{5}} ;

Cos A = 2/ \sqrt{5};

Tan A = 1/2 ;

Cot A = 2 ;

Cosec A = \sqrt{5} ;

Sec A =  \frac{\sqrt{5} }{2};

Step-by-step explanation:

We have given;

                          cot A = 2;

Now, cot A = 1 / tan A;

Hence, 1 / tan A = 2;

            tan A = 1 / 2;

Now, sec^{2} A- tan^{2} A = 1;                    (an identity)

Hence, sec^{2} A - (1/2)^2 = 1;

            sec^{2} A = 1 + 1/4;

            sec^{2} A = 5/4;

            sec A = \frac{\sqrt{5} }{2};

Now, cos A = 1 / sec A;

Hence, cos A = 1 / ( \frac{\sqrt{5} }{2});

                        = 2/ \sqrt{5};

Now, sin^{2} A + cos^{2} A = 1;                    (an identity)

         sin^{2} A + (2 / \sqrt{5})^2 = 1;

         sin^{2} A = 1 - 4 / 5 ;

                    = (5-4)/5;

                    = 1/5;

          sin A = \sqrt{\frac{1}{5} } ;

                     = \frac{1}{\sqrt{5}} ;

Now, csc^{2} A = 1 /sin A;

          csc^{2} A = 1 /(\frac{1}{\sqrt{5}});

                     = \sqrt{5}

           

Hence,

Sin A = \frac{1}{\sqrt{5}} ;

Cos A = 2/ \sqrt{5};

Tan A = 1/2 ;

Cot A = 2 ;

Cosec A = \sqrt{5} ;

Sec A =  \frac{\sqrt{5} }{2};

That's all.

Similar questions