Math, asked by ayush429054, 8 months ago

if cotA=20/21. find sin^2A+cos^2A​

Answers

Answered by TheProphet
11

S O L U T I O N :

Firstly, attachment a figure of right angled triangle according to the question.

\underline{\bf{Given\::}}

Cot A = 20/21

\underline{\bf{Explanation\::}}

As we know that cot Ф;

\boxed{\bf{cot\:\theta = \frac{Base}{Perpendicular} }}

\mapsto\tt{cot\:A = \dfrac{BC}{AB}=\dfrac{20}{21} }

\underline{\underline{\tt{Using\:by\:Pythagoras\:theorem\::}}}

\longrightarrow\sf{(hypotenuse)^{2} = (Base)^{2} + (Perpendicular)^{2}}

\longrightarrow\sf{(AC)^{2} = (BC)^{2} + (AB)^{2}}

\longrightarrow\sf{(AC)^{2} = (20)^{2} + (21)^{2}}

\longrightarrow\sf{(AC)^{2} = 400 + 441}

\longrightarrow\sf{(AC)^{2} = 841}

\longrightarrow\sf{AC=\sqrt{841} }

\longrightarrow\bf{AC= 29\:cm}

Now,

\mapsto\tt{sin^{2} \:A + cos^{2} \:A}

\mapsto\tt{\bigg(\dfrac{Perpendicular}{Hypotenuse } \bigg)^{2} + \bigg(\dfrac{Base}{Hypotenuse }\bigg)^{2}}

\mapsto\tt{\bigg(\dfrac{AB}{AC} \bigg)^{2} + \bigg(\dfrac{BC}{AC} \bigg)^{2}}

\mapsto\tt{\bigg(\dfrac{21}{29} \bigg)^{2} + \bigg(\dfrac{20}{29} \bigg)^{2}}

\mapsto\tt{\dfrac{441}{841}+\dfrac{400}{841}}

\mapsto\tt{\dfrac{441+ 400}{841}}

\mapsto\tt{\cancel{\dfrac{841}{841}}}

\mapsto\bf{1}

Thus,

The value of sin²A + cos²A  will be 1 .

Attachments:
Similar questions