Math, asked by jisso58, 1 month ago

if cota= √3 find the value of cos²a- sin²a/ 2cosa. sina​

Answers

Answered by Himanshu8715
2

Answer:

 \frac{1}{ \sqrt{3} }

Step-by-step explanation:

 \frac{cos²a- sin²a}{ 2cosa. sina}  =  \frac{ \cos(2a) }{ \sin(2a) }

Also,

 \cot(a)  =  \sqrt{3}

So,

a \:  =  { \cot }^{ - 1}  \sqrt{3}  = 30

So, 2a = 2 × 30° = 60°

So,

 \frac{ \cos(2a) }{ \sin(2a) }  =   \frac{ \cos(60) }{ \sin(60) }

 =  \frac{ \frac{1}{2} }{ \frac{ \sqrt{3} }{2} }  =  \frac{1}{2}  \times  \frac{2}{ \sqrt{3} }  =  \frac{1}{ \sqrt{3} }

Similar questions