Math, asked by lhema8998, 3 months ago

if cotA=9/12 then find sinA+cosA/sinA-cosA+secA+cosecA/secA-cosecA​

Answers

Answered by MrMonarque
13

Given:

  •  \cot( \alpha )  =  \frac{9}{12}

To Find:

  •   \frac{ \sin( \alpha ) +  \cos( \alpha )  }{ \sin( \alpha ) -  \cos( \alpha )  }   +   \frac{ \sec( \alpha ) +  \csc( \alpha )  }{ \sec( \alpha ) +  \csc( \alpha )  }

SoluTion:

Let, Alpha be A

WKT

 \cot( \alpha )  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  =   \frac{9}{12}

So,

\bold{\cos( \alpha )  = 9 \: and \:  \sin( \alpha )  = 12}

→\;\Large{\sf{\frac{12+9}{12-9} + \frac{{\frac{1}{cos\;\alpha}}+{\frac{1}{sin\;\alpha}}}{{\frac{1}{cos\;\alpha}}-{\frac{1}{sin\;\alpha}}}}}

AnSweR:

  \frac{ \sin( \alpha ) +  \cos( \alpha )  }{ \sin( \alpha ) -  \cos( \alpha )  }   +   \frac{ \sec( \alpha ) +  \csc( \alpha )  }{ \sec( \alpha ) +  \csc( \alpha )  } ◕➜ \Large{\red{\mathfrak{14}}}

Hope It Helps You ✌️

Attachments:
Similar questions