Math, asked by mimnun04, 19 days ago

if cotA+cosecA=m then prove it sinA=2m/(m^2+1)^2

Answers

Answered by suhail2070
0

Answer:

\sin( \alpha )  =  \frac{2m}{ {m}^{2} + 1 } .

Step-by-step explanation:

 \cot( \alpha )  +  \csc( \alpha )  = m  \:  \:  \:  \:  \: ...(i)\\  \\  { \csc( \alpha ) }^{2}  -  { \cot( \alpha ) }^{2}  = 1 \\  \\ ( \csc( \alpha )  +  \cot( \alpha )) ( \csc( \alpha )  -  \cot( \alpha ))  = 1 \\  \\  \csc( \alpha )  -  \cot( \alpha )  =  \frac{1}{ \cot( \alpha )  +  \csc( \alpha ) }  =  \frac{1}{m} \:  \:  \:  \:  \: ...(ii)  \\  \\ from \: (i) \: and \:  \:  (ii)  \\ \\ 2 \csc( \alpha )  = m +  \frac{1}{m}  \\  \\  \frac{2}{ \sin( \alpha ) }  =  \frac{ {m}^{2} + 1 }{m}  \\  \\  \sin( \alpha )  =  \frac{2m}{ {m}^{2} + 1 } .

Similar questions