Math, asked by SADWICKGOUD, 4 months ago

if CotA+CotB+CotC=root3​

Answers

Answered by baranishanmu
1

Step-by-step explanation:

ANSWER

We have, cotA+cotB+cotC=

3

Squaring,

cot

2

A+cot

2

B+cot

2

C+2cotAcotC+2cotBcotC+2cotCcotA=3 ...(1)

Now in △ABC. A+B+C=π⇒A+B=π−C

⇒cot(A+B)=cot(π−C)

cotA+cotB

cotA.cotB−1

=−cotC

⇒cotAcotB+cotBcotC+cotCcotA=1 ...(2)

From (1) and (2) , we have,

cot

2

A+cot

2

B+cot

2

C+2cotAcotB+2cotBcotC+2cotCcotA

=3[cotAcotB+cotBcotC+cotCcotA]

⇒cot

2

A+cot

2

B+cot

2

C−cotAcotB−cotBcotC−cotCcotA=0

2

1

[(cotA−cotB)

2

+(cotB−cotC)

2

+(cotC−cotA)

2

]=0

[∵x

2

+y

2

+z

2

−zx−xy−zy=

2

1

{(x−y)

2

+(y−z)

2

+(z−x)

2

}]

⇒(cotA−cotB)

2

+(cotB−cotC)

2

+(cotC−cotA)

2

=0

⇒cotA=cotB=cotC

[Since R.H.S. is zero, each square must be zero]

⇒A=B=C [for triangle]

⇒ Triangle is equilateral.

Similar questions