if cotAcotB=2
show that cos(A+B)/cos(A-B)=1/3
Answers
Answered by
1
Given:- cotA*cotB=2
To Prove:- cos(A+B)/cos(A-B)=1/2
Solution:- ● cos(A+B)/cos(A-B)
● cosAcosB -
sinAsinB/cosAcosB+sinAsinB
● cotAcotB-1/cotAcotB+1
● 2-1/2+1 [since,cotAcotB=2(given)]
●so,1/3
*Hence Proved*
THANK YOU
Answered by
10
HELLO DEAR,
GIVEN:- cotA × cotB = 2
now, cos(A + B)/cos(A - B)
=> cosAcosB - sinAsinB/cosAcosB + sinAsinB
[diving both in num. & deno. by sinAsinB]
=> cotAcotB - 1/cotAcotB + 1
[cotAcotB = 2]
=> 2 - 1/2 + 1
=> 1/3
hence, cos(A + B)/cos(A - B) = 1/3
I HOPE IT'S HELP YOU DEAR
THANKS
Similar questions