Math, asked by SRKUniworld, 10 months ago

If cotAcotB = 3 then cos(A+B)/cos(A-B)​

Answers

Answered by Anonymous
3

Answer:

1/2

Step-by-step explanation:

[cos(A + B) = cosAcosB - sinAsinB]

[cos(A - B) = cosAcosB + sinAsinB]

Apply the formulas directly in the given equation.

cos(A + B)/cos(A - B)

=> (cosAcosB - sinAsinB)/(cosAcosB + sinAsinB)

Divide the numerator and denominator by sinAsinB

=> (cosAcosB/sinAsinB - sinAsinB/sinAsinB)/(cosAcosB/sinAsinB + sinAsinB/sinAsinB)

=> cotAcotB - 1/cotAcotB + 1

=> 3 - 1/3 + 1

=> 2/4

=> 1/2

Hence, the value of cos(A + B)/cos(A - B) = 1/2.

#Hope my answer help you

Answered by Anonymous
0

\huge\bf{Answer:-}

 = cos(A + B) = cosAcosB - sinAsinB \\ </p><p></p><p> = cos(A - B) = cosAcosB + sinAsinB

Formula

 = cos(A + B)/cos(A - B) \\ </p><p> =  \frac{(cosAcosB - sinAsinB)}{(cosAcosB + sinAsinB)}

 =   \frac{ (cosAcosB}{sinAsinB - sinAsinB \frac{(sinAsinB)}{cosAcosB \frac{}sinAsinB + sinAsinB}{sinAsinB)} }

 =  \frac{cotAcotB - 1}{cotAcotB + 1}  \\ </p><p> =  \frac{3 - 1}{3 + 1} \\ </p><p> =  \frac{2}{4} \\ </p><p> =  \frac{1}{2}  \\ </p><p>

Therefore, cos(A + B)/cos(A - B) = 1/2

Similar questions