if cotO= 7/8, evaluate (1+sinO)(1-sinO)/(1+cosO)(1-cosO)
Answers
Answered by
11
Answer: Hi friend,
given is cotθ=7/8 ⇒ opposite side = 8 and adjacent side=7 so, hypotenuse will be squareroot of sum of sqaures of 7 and 8 i.e sqrt7^2+8^2=√113 so now sinθ=8/√113 and cosθ=7/√113
(1+sinθ)(1-sinθ)/(1+cotθ)(1-cosθ)=1-sin^2θ/1+cotθ(1-cosθ)
= 1-64/113/1+7/8(1-7/√113)
on solving we get 49/(√113-7)√113
pls mark me as brainliest.
Answered by
10
Answer:
49/64
Step-by-step explanation:
1^2 - sin^2O/1^2 - cos^2O
1 - sin^2O/1 - cos^2O
cos^2O/sin^2O
cot^2O
(7/8)^2
49/64
Similar questions