If cottheta= 7/8,evaluate (1+sin theta)(1-sin theta)/(1+costheta)(1-cos theta)
Answers
Answer
Given, cot θ = 7/8
=> tan θ = 1/(7/8) {since tan θ = 1/cot θ}
=> tan θ = 8/7
In the figure,
from triangle ABC,
Apply Pythagoras Theorem, we get
=> (Hypotanous)2 = (Perpendicular)2 + (Base)2
=> AC2 = AB2 + BC2
=> AC2 = 82 + 72
AC2 = 64 + 49
=> AC2 = 113
=> AC = √113
Given, {(1 + sin θ)*(1 - sin θ)}/{(1 + cos θ)*(1 - cos θ)}
= (1 - sin2 θ)}/{(1 - cos2 θ) {since a2 - b2 = (a - b)*(a + b)}
= (1 - sin2 θ)}/sin2 θ {since sin2 θ + cos2 θ = 1 }
Grom the figure, sin θ = AB/AC = 8/√113
Now, (1 - sin2 θ)}/sin2 θ = {1 - (8/√113)2 )}/(8/√113)2
= (1 - 64/113)/(64/113)
= {(113 - 64)/113}/(64/113)
= (49/113)/(64/113)
= 49/64
Hence, {(1 + sin θ)*(1 - sin θ)}/{(1 + cos θ)*(1 - cos θ)} = 49/64
Step-by-step explanation:
This is the answer
Hope u like it