If CR : RS = 2:3 and RS: SD = 5:6, then S divides line segment CD in the ratio
Answers
Answer:
Using the section formula, if a point (x,y) divides the line joining the points (x
1
,y
1
) and (x
2
,y
2
) in the ratio m:n, then
(x,y)=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
Let's assume the joining points as A (2,−3) and B (5,6) be divided by point P (x,0) in the ratio k:1.
Then , we have,
y=
k+1
ky
2
+y
1
0=
k+1
6k+(−3)
0=6k−3
k=
2
1
Hence , the required ratio is 1:2.
Using the section formula, if a point (x,y) divides
the line joining the points (x1 ,y 1 ) and (x 2 ,y 2 ) in the ratio m:n, then
(x,y)=( m+n mx 2 +nx 1 , m+n m y 2 +ny 1 )
Substituting (x 1 ,y 1 )=(2,−3) and (x 2 ,y 2 )=(5,6) in the section formula,
we get the point ( m+n m(5)+n(2) , m+n m(6)+n(−3) )
Since the point of intersection lies on the x - axis, y - coordinate =0
m+n
6m−3n
=0
=>6m−3n=0
=>6m=3n
2m=n
=>m:n=1:2