Math, asked by swaroopsunil550, 11 months ago

If CSA of cylinder is 616 cm²and the sum of radius and height is 21 cm then find TSA of cylinder??

Answers

Answered by ganramesh
6

Step-by-step explanation:

h+r=21......(1)

r=21-h

CSA=616 cm^2

2πrh=616cm^2

22/7×(21-h)h=616/2

22/7×21h-h^2=308

21h-h^2=308×7/22

21h-h^2=14×7

21h-h^2=98

h^2-21h+98=0

by solving the equation we get,

h=14.....(2)

putting (2) in (1)

r=7

TSA=2πr(h+r)

=2×(22/7)×(7)(21)

TSA=44×21=924cm^2

Answered by Anonymous
52

⠀⠀⠀⠀⠀{ \huge \bf{ \mid{ \overline{ \underline{ \pink{QUESTION}}}}  \mid}} \longrightarrow</p><p>

If CSA of cylinder is 616 cm²and the sum of radius and height is 21 cm then find TSA of cylinder??

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀\huge{ \underline{ \red{ \bold{ \underline{ \bf{AnSweR }}}}}}

⠀⠀  \large\underline{ \underline{ \blue{ \bold {Given}}}} =  &gt;

※CSA of cylinder = 616cm square.

※sum of radius and height

━━━━━━━━━━━━━━━━━━

⠀⠀  \large\underline{ \underline{ \blue{ \bold {To \:Find}}}} =  &gt;

we have to find TSA of cylinder.

━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀❖\huge\underline{ \underline{ \purple{ \bold{solution}}}}

⠀⠀⠀⠀⠀h + r = 21

⠀⠀⠀⠀ radius = 21 - h

we know that ,

⠀⠀⠀⠀⠀ {\boxed{ \red{ \fbox{ \green{ \rm{CSA\: of \: cylinder = 2 \pi \: rh}}}}}}

⠀⠀⠀so,

⠀⠀⠀⠀⠀2πrh = 616 cm square

 \bf \:  \frac{22}{7}  \times (21 - h)h =  \frac{616}{2}  \\  \\  =  &gt;  \bf \frac{22}{7}  \times 21h - h {}^{2}  = 308 \\  \\  =  &gt;  \bf \: h {}^{2}   - 21h + 98=0

⠀⠀⠀⠀⠀ solving equation

 \bf \: h {}^{2}  - 21h + 98 = 0 \\  \\   \bf \: h(h - 7) - 14(h - 7) = 0 \\  \\  \bf \:( h - 7)(h - 14) \\  \\  \bf \: h = 14

⠀⠀⠀⠀⠀we get h = 14

so,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀r = 7

⠀⠀⠀ {\boxed{ \red{ \fbox{ \green{ \rm{TSA \: of \: cylinder = 2 \pi \: r(h+r)}}}}}}

 \bf2 \times  \frac{22}{7}  \times 7(14 + 7) \\  \\ \bf  =  &gt; 44 \times 21 \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \fbox{ \red{=  &gt; 924cm {}^{2} }}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

hops this may help you

⠀⠀⠀⠀⠀⠀⠀⠀ \huge{ \pink{ \ddot{ \smile}}}

⠀⠀⠀⠀⠀⠀ \huge \mathfrak{ \blue { \bigstar{thanks}}}

Similar questions