If D and E trisect BC prove that 8AE^2=3AC^2+5AD^2
Answers
Answer:
Diagram of this question attached in attachment file.
Given right DABC, right angled at B.
D and E are points of trisection of the side BC
Let BD = DE = EC = k
Hence we get BE = 2k and BC = 3k
In ΔABD, by Pythagoras theorem, we get
AD2 = AB2 + BD2
AD2 = AB2 + k2
Similarly, in ΔABE we get
AE2 = AB2 + BE2
Hence AE2 = AB2 + (2k)2
= AB2 + 4k2 and
AC2 = AB2 + BC2
= AB + (3k)2
AC2= AB2 + 9k2
Consider, 3AC2 + 5AD2 = 3(AB2 + 9k2) + 5(AB2 + 4k2)
= 8AB2 + 32k2
= 8(AB2 + 4k2)
∴ 3AC2 + 5AD2 = 8AE2
since D and E trisect BC
BD=DE=EC
Let BD=DE=DC
Then
BE=2x and BC=3x
In triangle ABD
AD^2=AB^2+BD^2
AD^2=AB^2+x^2 ---------(1)
In triangle ABE
AE^2=AB^2+4x^2--------(2)
In triangle ABC
AC^2=AB^2+9x^2--------(3)
NOW,
8AE^2-3AC^2-5AD^2
8(AB^2+4x^2)-3(AB^2+9x^2)-5(AB^2+x^2)
8AB^2+32x^2-3AB^2-27x^2-5AB^2-5x^2=0
=8AE^2=3AC^2+5AD^2
HENCE PROVED