If D and E trisect BC. The term 3AC2+5AD2=?
Answers
Answered by
0
Step-by-step explanation:
In ΔABC
D & E trisect BC.
Let AB=y
BD=x
DE=x & BC=3x, BE=2x
EC=x
Now, we get three right
angle triangle with help of Pythagoras
AD^2=AB^2+BD^2
AE^2=AB^2+BE^2
AC^2=AB^2+BC^2
Now, LHS=8AE^2
=8(AB^2+BE^2)
=8(y^2+(2x)^2)
LHS=8y^2+32x^2
RHS=3AC^2+5AD^2
RHS=3(AB^2+BC^2)+5(AB^2+BD^2)
RHS=3(y^2+9y^2)+5(x^2+y^2)
RHS=8y^2+32x^2
So, LHS=RHS
∴8AE^2=3AC^2+5AD^2
Hence Proved
Similar questions