if d is the hcf of 32 and 60,find x and y satisfying d= 32x+60y
Answers
Answered by
44
Answer:
Step-by-step explanation:
4 is the HCF of 32 and 60
Therefore d= 4
60=32×1+28
32=28×1+4
28=4×7+0
Thus,4=32-28×1
4= 32-(60-32×1)×1
4=32-60-32×1
4=32(2)-60(1)
4=32(2)+60(-1)
4=32(x)+60(y)
x=2 y=-1
Answered by
20
Answer:
Step-by-step explanation:
HCF of 32 and 60
By Euclid's division lemma
a=bq+r
60=32(1)+28
32=28(1)+4
28=4(7)+0
HCF=4
GIVEN d=4
4=32-28
32-(60-32)
32-60+32
4=32(2)+60(-1)
COMPARE WITH
d=32(x) +60(y)
SOLUTIONS
d=4
x=2
y=-1
Similar questions