If d is the HCF of 45 and 27, find d = 27x + 45y.
Answers
Answered by
1
45=9×5 and 27=9×3
⟹hcf(45, 27)=9=d.
d=27x+45y
⟹9=27x+45y
⟹27x=9−45y
⟹27x=−27y+9−18y
⟹ 27x27=−27y 27+9−18y27
⟹x=−y+9(1−2y)9×3
⟹x=−y+1−2y3.
t=1−2y3, t∈Z,
⟹3t=1−2y
⟹2y=1−3t
⟹2y=−2t+1−t
⟹ 2y2=−2t 2+1−t2
⟹y=−t+1−t2.
u=1−t2
⟹2u=1−t, u∈Z,
⟹t=1−2u
⟹y=−(1−2u)+u
=−1+2u+u
=−1+3u.
x=−y+1−2y3
⟹x=−(−1+3u)+1−2(−1+3u)3
=1−3u+1+2−6u3
=1−3u+3−6u3
=1−3u+3(1−2u)3
=1−3u+1−2u
=2−5u.
∴ (x, y)=(2−5u, −1+3u), u∈Z.
Similar questions