If d is the hcf of 56 and 72, find x and y satisfying d=56x + 62y
Answers
Answered by
10
a=bq+r
so 72=56*1+16 ......(1)
56=16*3+8 .....(2)
16=8*2+0
H.C.F (56,72)= 8
Now 8=56-16*3 ......(2)
8=56- (72-56*1)*3 .....(1)
8=56- (72-56)*3
8=56-3(72-56)
8=56-72*3 +56*3
8=56(1+3) +72(-3)
8=56*4 +72(-3)
Taking x=4 and y=-3
8=56x+72y
x and y are not equal
so 72=56*1+16 ......(1)
56=16*3+8 .....(2)
16=8*2+0
H.C.F (56,72)= 8
Now 8=56-16*3 ......(2)
8=56- (72-56*1)*3 .....(1)
8=56- (72-56)*3
8=56-3(72-56)
8=56-72*3 +56*3
8=56(1+3) +72(-3)
8=56*4 +72(-3)
Taking x=4 and y=-3
8=56x+72y
x and y are not equal
Answered by
0
Answer:
a=bq+r
so 72=56*1+16 __(1)
56=16*3+8 __(2)
16=8*2+0
H.C.F (56,72)= 8
Now 8=56-16*3 __(2)
8=56- (72-56*1)*3 __(1)
8=56- (72-56)*3
8=56-3(72-56)
8=56-72*3 +56*3
8=56(1+3) +72(-3)
8=56*4 +72(-3)
Taking x=4 and y=-3
8=56x+72y
x and y are not equal
Step-by-step explanation:
Similar questions