If d is the HCF of 56 and 72, find x,y satisfying d=56x + 72y. Also, show that x and y are not
unique ?
please explain each thing
Answers
Answered by
2
➵ 72 = 56 × 1 + 16 __[1]
➵ 56 = 16 × 3 + 8 __[2]
➵ 16 = 8 × 2 + 0
:. H.C.F = 8
______________________________
From eq[2],
➵ 56 - (16) × 3 = 8 __(i)
From eq[1],
➵ 72 - 56 = 16 __(ii)
By substituting (ii) in (i),
➵ 56 - (72 - 56) × 3 = 8
➵ 8 = 56 + 72(- 3) + 56(3)
➵ 8 = 56(4) + 72(- 3) __[3]
➵ d = 56x + 72y
Where, x = 4 and y = - 3
______________________________
By adding (72)(56) - (72)(56) in eq[3],
➵ 8 = 56(4) + 72(- 3) + (72)(56) - (72)(56)
➵ 8 = 56(4 + 72) + 72(- 3 - 56)
➵ 8 = 56(76) + 72(- 59)
➵ d = 56x + 72y
Hence, x = 56 and y = - 59.
______________________________
Therefore, x and y are not unique.
Q.E.D
Answered by
2
Answer:-
Now L. C. M =8
Similar questions