Math, asked by kumarikashish710, 8 months ago

If D is the midpoint of the hypotenuse AC of a right-angled AABC,
prove that BD = half of ac.

Answers

Answered by archisoni9825
1

Answer:

If D is the mid point of the hypotenuse AC of a right angle triangle ABC, prove that BD is equal to 1/2 AC?

Ad by DhanWise

As an Indian, what is a safe retirement corpus that one should aim given that I'm 30?

Hold your breath! The answer is 5 crores! Don’t lose your sleep already over this seemingly large amount. We will break this down

Continue reading

7 Answers

Ravi Shankar, Ph.D. Electrical Engineering & Mathematics, Indian Institute of Science, Bangalore (1993)

Updated May 17, 2018 · Author has 331 answers and 491.7Kanswer views

Given:

Right angle triangle ΔABCΔABC where ∡ABC=90∘∡ABC=90∘

BDBD divides ACAC, i.e., AD=DCAD=DC

From DD, draw EDED and FD⊥FD⊥ to ABAB and BCBCrespectively

In DEBFDEBF, Because ∡BED = ∡BFD = ∡FBE = 90∘, ∠EDF=90∘∡BED = ∡BFD = ∡FBE = 90∘, ∠EDF=90∘. Therefore, DEBFDEBF is a rectangle. Hence, BE = DF, ED = BFBE = DF, ED = BF.

In Δs AEDΔs AED and DFCDFC,

∡EAD = ∡FDC

Answered by akashpapatla
1

Answer:

BD=½AC

Step-by-step explanation:

If D is the mid point of AC, the line BD creates two triangles i.e, ABD and CBD

So acc to SAS property, BD=BD, AD=CD, and angle ABD= angle CBD

Hence proved

Similar questions