If d1 = 3i-2j + 4k and d2 = -5i + 2j-k, determine (d1 + d2). (d1 × 4d2).
Answers
Answered by
5
Given info : two vectors d₁ = 3i - 2j + 4k and d₂ = -5i + 2j - k
To find : the value of (d₁ + d₂).(d₁ × 4d₂)
solution : Here, (d₁ + d₂) = (3i - 2j + 4k) + (-5i + 2j - k)
= -2i + 0j + 3k
4d₂ = 4(-5i + 2j - k)
= -20i + 8j - 4k
Now, d₁ × 4d₂ = (3i - 2j + 4k) × (-20i + 8j - 4k)
= (-2 × -4 - 4 × 8)i - (3 × -4 - 4 × -20)j + (3 × 8 - (-2) × -20)k
= - 24i - 68j - 16k
Now, (d₁ + d₂).(d₁ × 4d₂)
= (-2i + 0j + 3k).(- 24i - 68j - 16k)
= -2 × -24 + 0 × -68 + 3 × -16
= 48 + 0 - 48
= 0
Therefore the value of (d₁ + d₂).(d₁ × 4d₂) is 0
Similar questions