Math, asked by aayushrirpawar, 7 months ago

If diagonal of rectangle is 26 cm and one of the side is 24cm then find the other side ?

Answers

Answered by chetanakhairnar2000
0

Answer:

Step-by-step explanation:

rectangle is making two right angeled  triangle when we draw one diagonal.

hence using P. G. Theorem,

(diagonal)² = (one side of rectangle)² + (other  side of rectangle)²

(26)²  =  (24)²  +  (other side of rectangle)²

(other side of rectangle)²  =  (26)²  -  (24)²

(other side of rectangle)²  =  676  -  576

(other side of rectangle)²  =  100  =   10²

√(other side of rectangle) = √10

(other side of rectangle)    = 10cm

Answered by prince5132
11

GIVEN :-

  • Diagonal of Rectangle is 26 cm.
  • One side of Rectangle is 24 cm.

TO FIND :-

  • The length of other side.

SOLUTION :-

  \underline{ \bigstar  \: \textsf{Diagram.}} \\

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\tt\large{A}}\put(7.7,1){ \tt\large{B}}\put(9.5,0.7){\sf{\large{24 cm}}}\put(11.5,1){ \tt\large{C}}\put(8,1){\line(1,0){3.5}}\put(8,1){\line(0,2){2}}\put(11.5,1){\line(0,3){2}}\put(8,3){\line(3,0){3.5}}\put(8.8,2){\sf{\large{26 cm}}}\qbezier(8,1)(8,1)(11.5,3)\put(11.5,3){ \tt\large{D}}\put(11.3,1){\line(0,2){0.2}}\put(11.3,1.2){\line(2,0){0.2}}\end{picture} \\

\underline{\bigstar \: \sf{In\: \triangle \; BCD \: by \: pythagoras \: theorem}}\\ \\

:  \implies \displaystyle \sf \: (DB)^{2} = (BC)^{2} + (DC)^{2} \\  \\  \\

:  \implies \displaystyle \sf  \: (26) ^{2}  = (24) ^{2}  +  (DC)^{2} \\  \\  \\

:  \implies \displaystyle \sf  \:676 = 576 +  (DC)^{2} \\  \\  \\

:  \implies \displaystyle \sf  \: (DC)^{2} = 676 - 576 \\  \\  \\

:  \implies \displaystyle \sf  \: (DC)^{2} =100 \\  \\  \\

:  \implies \displaystyle \sf  \: DC= \sqrt{100}  \\  \\  \\

:  \implies  \underline{ \boxed{\displaystyle \sf  \: DC=10 \: cm}} \\  \\

 \therefore \underline{ \displaystyle \sf  length  \: of  \: other  \: side\: DC \:is \: 10 \: cm. }

Similar questions