Math, asked by mondalargha8160, 10 months ago

If difference between the roots of the equation x^2-kx +8 =0 is 4 then the value of K is

Answers

Answered by Anonymous
11

Answer:-

The value of k is \sf{4\sqrt3}.

Given:

  • The given quadratic equation is \sf{x^{2}-kx+8=0}

  • Difference between the roots of equation is 4.

To find:

  • The value of k

Solution:-

The given quadratic equation is \sf{x^{2}-kx+8=0}

Let the roots be \sf{\alpha \ and \ \beta}

\sf{\therefore{\alpha-\beta=4...(1)}}

Sum of roots=\sf{\frac{-b}{a}}

\sf{\therefore{\alpha+\beta=k...(2)}}

Product of roots=\sf{\frac{c}{a}}

\sf{\therefore{\alpha\beta=8...(3)}}

According to the identity

\sf{(a+b)^{2}=(a-b)^{2}+4ab}

\sf{(\alpha+\beta)^{2}=(\alpha-\beta)^{2}+4\alpha\beta}

From (1), (2) and (3)

\sf{k^{2}=4^{2}+4(8)}

\sf{k^{2}=16+32}

\sf{k^{2}=48}

On taking square root of both sides.

\sf{k=\sqrt48}

\sf{\therefore{k=4\sqrt3}}

The value of k is \sf{4\sqrt3}.

Answered by TheSentinel
41

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{If \ difference \  between \ the \  roots \  of \  the }

\rm{equation \  x^2-kx +8 =0 \  is \ 4 \  then\ find}

\rm{the \ value \ of \ k }

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\red{\boxed{\blue{The \ value \ of \ k \  is   \ 4\sqrt3}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \  given \  quadratic \  equation \ is}

\rm{x^{2}-kx+8=0} \\

\rm{Difference \  between \ the \ roots \ of \  equation }

\rm{ is \  4.}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{The \  value \  of \ k}

_________________________________________

\purple{\underline{\underline{\blue{\boxed{\boxed{\pink{\star{\sf Solution:}}}}}}}} \\ \\

\rm{The \  given \  quadratic \  equation \ is}

\rm{x^{2}-kx+8=0} \\

\rm{Difference \  between \ the \ roots \ of \  equation }

\rm{ is \  4.} \\ \\

\rm{Let \ the \  roots \ be \ \alpha \ and \ \beta}

\rm{\therefore{\alpha-\beta=4.......(a)}} \\ \\

\rm{We \ know ,}

\rm{Sum \  of \ roots \ \frac{-b}{a}} \\ \\

\rm{\therefore{\alpha+\beta=k.......(b)}} \\ \\

\rm{Also,} \\ \\

\rm{Product \  of \ roots \ = \ \frac{c}{a}} \\ \\

\rm{\therefore{\alpha\beta=8.........(c)}} \\ \\

\rm{(a+b)^{2}=(a-b)^{2}+4ab}

\rm{(According \ to \ the \ identity )} \\

\rm{(\alpha+\beta)^{2}=(\alpha-\beta)^{2}+4\alpha\beta} \\ \\

\rm{From \ (a), \  (2) \  and \  (3)} \\ \\

\rm\therefore{k^{2}=4^{2}+4(8)} \\ \\

\rm\therefore{k^{2}=16+32} \\ \\

\rm\therefore{k^{2}=48} \\ \\

\rm{On \  taking \ square \ root \ of \ both \  sides. } \\ \\

\rm{k=\sqrt48} \\ \\

\rm{\therefore{k=4\sqrt3}} \\ \\

\rm{\red{\boxed{\blue{The \ value \ of \ k \  is   \ 4\sqrt3}}}}

____________________________________________

\rm\red{Hope \ it \ Helps \ :))}

Similar questions