If \displaystyle \sin A + \sin^2 A = 1sinA+sin2A=1 and \displaystyle a \cos^{12} A + b \cos^8 A + c \cos^6 A - 1 = 0acos12A+bcos8A+ccos6A−1=0 then \displaystyle b+\frac{c}{a}+b = ?b+ac+b=?
Answers
Answered by
1
Answer:
If \displaystyle \sin A + \sin^2 A = 1sinA+sin2A=1 and \displaystyle a \cos^{12} A + b \cos^8 A + c \cos^6 A - 1 = 0acos12A+bcos8A+ccos6A−1=0
then a+b+c= 5
Similar questions
English,
5 months ago
Science,
5 months ago
Accountancy,
5 months ago
English,
11 months ago
Social Sciences,
11 months ago
Economy,
1 year ago
Environmental Sciences,
1 year ago