Math, asked by t6anush, 10 months ago

If \displaystyle x+y+z=\pix+y+z=π prove the trigonometric identity \displaystyle cot{\frac{x}{2}}+cot{\frac{y}{2}}+cotg\frac{z}{2}=cot{\frac{x}{2}}cot{\frac{y}{2}}cot{\frac{z}{2}}cot 2 x ​ +cot 2 y ​ +cotg 2 z ​ =cot 2 x ​ cot 2 y ​ cot 2 z ​

Answers

Answered by pinjaraarifisha
1

Answer:

Hey there is some problem with your question

Answered by swagswara098
0

Answer:

x+y+z=π, so \displaystyle {\frac{x}{2}}+{\frac{y}{2}}={\frac{\pi}{2}}-{\frac{z}{2}}; {\frac{z}{2}}={\frac{\pi}{2}}-({\frac{x}{2}}+{\frac{y}{2}})  

2

x

​  

+  

2

y

​  

=  

2

π

​  

−  

2

z

​  

;  

2

z

​  

=  

2

π

​  

−(  

2

x

​  

+  

2

y

​  

). Because of \displaystyle cot\alpha={\frac{1}{tan\alpha}}cotα=  

tanα

1

​  

, we get \displaystyle cot\alpha={\frac{cos\alpha}{sin\alpha}}cotα=  

sinα

cosα

​  

. Then \displaystyle cot{\frac{x}{2}}+cot{\frac{y}{2}}+cot{\frac{z}{2}}={\frac{cos{\frac{x}{2}}}{sin{\frac{x}{2}}}}+{\frac{cos{\frac{y}{2}}}{sin{\frac{y}{2}}}}+{\frac{cos{\frac{z}{2}}}{sin{\frac{z}{2}}}}={\frac{cos{\frac{x}{2}}sin{\frac{y}{2}}+cos{\frac{y}{2}}sin{\frac{x}{2}}}{sin{\frac{x}{2}}sin{\frac{y}{2}}}}+{\frac{cos{\frac{z}{2}}}{sin{\frac{z}{2}}}}={\frac{sin({\frac{x}{2}}+{\frac{y}{2}})}{sin{\frac{x}{2}}sin{\frac{y}{2}}}}+{\frac{cos{\frac{z}{2}}}{sin{\frac{z}{2}}}}={\frac{cos{\frac{z}{2}}}{sin{\frac{x}{2}}sin{\frac{y}{2}}}}+{\frac{cos{\frac{z}{2}}}{sin{\frac{z}{2}}}}=cos{\frac{z}{2}}\cdot{\frac{sin{\frac{z}{2}}+sin{\frac{x}{2}}sin{\frac{y}{2}}}{sin{\frac{x}{2}}sin{\frac{y}{2}}sin{\frac{z}{2}}}}={\frac{cos{\frac{z}{2}}}{sin{\frac{z}{2}}}}\cdot{\frac{cos({\frac{x}{2}}+{\frac{y}{2}})+sin{\frac{x}{2}}sin{\frac{y}{2}}}{sin{\frac{x}{2}}sin{\frac{y}{2}}}}={\frac{cos{\frac{z}{2}}}{sin{\frac{z}{2}}}}\cdot{\frac{cos{\frac{x}{2}}cos{\frac{y}{2}}}{sin{\frac{x}{2}}sin{\frac{y}{2}}}}=cot{\frac{x}{2}}cot{\frac{y}{2}}cot{\frac{z}{2}}cot  

2

x

​  

+cot  

2

y

​  

+cot  

2

z

​  

=  

sin  

2

x

​  

 

cos  

2

x

​  

 

​  

+  

sin  

2

y

​  

 

cos  

2

y

​  

 

​  

+  

sin  

2

z

​  

 

cos  

2

z

​  

 

​  

=  

sin  

2

x

​  

sin  

2

y

​  

 

cos  

2

x

​  

sin  

2

y

​  

+cos  

2

y

​  

sin  

2

x

​  

 

​  

+  

sin  

2

z

​  

 

cos  

2

z

​  

 

​  

=  

sin  

2

x

​  

sin  

2

y

​  

 

sin(  

2

x

​  

+  

2

y

​  

)

​  

+  

sin  

2

z

​  

 

cos  

2

z

​  

 

​  

=  

sin  

2

x

​  

sin  

2

y

​  

 

cos  

2

z

​  

 

​  

+  

sin  

2

z

​  

 

cos  

2

z

​  

 

​  

=cos  

2

z

​  

⋅  

sin  

2

x

​  

sin  

2

y

​  

sin  

2

z

​  

 

sin  

2

z

​  

+sin  

2

x

​  

sin  

2

y

​  

 

​  

=  

sin  

2

z

​  

 

cos  

2

z

​  

 

​  

⋅  

sin  

2

x

​  

sin  

2

y

​  

 

cos(  

2

x

​  

+  

2

y

​  

)+sin  

2

x

​  

sin  

2

y

​  

 

​  

=  

sin  

2

z

​  

 

cos  

2

z

​  

 

​  

⋅  

sin  

2

x

​  

sin  

2

y

​  

 

cos  

2

x

​  

cos  

2

y

​  

 

​  

=cot  

2

x

​  

cot  

2

y

​  

cot  

2

z

​  

.

Step-by-step explanation:

Similar questions