Math, asked by Riddjeon, 1 month ago

if dx=-35 and d=-5are the values of the determinants for certain simultaneous equations in x and y, find x​

Answers

Answered by MathCracker
12

Appropriate Question :-

if dx=-35 and d=-5are the values of the determinants for certain simultaneous equations in x.

Solution :-

Given :

  • dx = -35
  • d = -5

Need to find :

  • x

Using formula :

\sf:\longmapsto{x =  \frac{dx}{d} } \\

Now,

\sf:\longmapsto{x =  \frac{ - 35}{ - 5} } \\  \\ \bf:\longmapsto \red{x = 7} \:  \:  \:

Additional Information :-

Let assume,

  • ax + by = e
  • cx + dy = f

are the equation then,

D =

\sf:\longmapsto{ D = \begin{gathered} \begin{gathered}  \begin{gathered}\begin{gathered}\left|\begin{array}{cc} \sf a &amp;  \sf b \\  \sf c &amp;  \sf d \end{array}\right| </p><p> \end{gathered} \end{gathered} \end{gathered}\end{gathered}}

Dx =

\sf:\longmapsto{ Dx = \begin{gathered} \begin{gathered}  \begin{gathered}\begin{gathered}\left|\begin{array}{cc} \sf e &amp;  \sf b \\  \sf f &amp;  \sf d \end{array}\right| </p><p> \end{gathered} \end{gathered} \end{gathered}\end{gathered}}

Dy =

\sf:\longmapsto{ Dy= \begin{gathered} \begin{gathered}  \begin{gathered}\begin{gathered}\left|\begin{array}{cc} \sf a &amp;  \sf e \\  \sf c &amp;  \sf f \end{array}\right| </p><p> \end{gathered} \end{gathered} \end{gathered}\end{gathered}}

x =

\sf:\longmapsto{x = \frac{Dx}{D}}</p><p> \\

y =

\sf:\longmapsto{y = \frac{Dy}{D}}</p><p> \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

If Dx and D are the determinant for certain simultaneous equation in x and y and Dx =3D,find x.

https://brainly.in/question/29256929

Similar questions