Math, asked by pragyanshigupta, 7 months ago

If dx/dt +5y = 0 and dy/dt - 5x = 0
then y​

Answers

Answered by pulakmath007
0

SOLUTION

GIVEN

\displaystyle \sf{ \frac{dx}{dt}  + 5y = 0}

\displaystyle \sf{ \frac{dy}{dt}  + 5x = 0}

TO DETERMINE

The value of y

EVALUATION

Here the given system of differential equations are

\displaystyle \sf{ \frac{dx}{dt}  + 5y = 0} \:  \:  \:  \:  \:  -  -  -  - (1)

\displaystyle \sf{ \frac{dy}{dt}  + 5x= 0} \:  \:  \:  -  -  -  - (2)

Differentiating both sides of Equation 2 we get

\displaystyle \sf{ \frac{ {d}^{2} y}{d {t}^{2} }  + 5 \frac{dx}{dt} = 0}

\displaystyle \sf{  \implies \: \frac{ {d}^{2} y}{d {t}^{2} }   =  -  5 \frac{dx}{dt} }

From Equation 1 we get

\displaystyle \sf{  \implies \: \frac{ {d}^{2} y}{d {t}^{2} }   =  -  5  \times ( -  5y)}

\displaystyle \sf{  \implies \: \frac{ {d}^{2} y}{d {t}^{2} }   -  25y = 0}

\displaystyle \sf{  \implies ({D }^{2}  -  25)y = 0 }

\displaystyle \sf{  Let \:  \: y =  {e}^{mx}   \:  \: be  \:  the \:  trial \:  solution }

Then the auxiliary equation is

\displaystyle \sf{  {m }^{2}  -  25 = 0 }

\displaystyle \sf{  \implies{m }^{2}   =   25  }

\displaystyle \sf{  \implies \: m =  \pm \: 5}

Thus we have

\displaystyle \sf{  y = A {e}^{5t}  +B {e}^{ - 5t}   }

From Equation 2 we get

\displaystyle \sf{5x =  -  \frac{dy}{dt} }

\displaystyle \sf{   \implies \: 5x = - 5 A {e}^{5t}  + 5 B {e}^{ - 5t}   }

\displaystyle \sf{   \implies \: x = -  A {e}^{5t}  +  B {e}^{ - 5t}   }

Thus we get

\displaystyle \sf{   x = -  A {e}^{5t}  +  B {e}^{ - 5t}   }

\displaystyle \sf{ y=  A {e}^{5t}  +  B {e}^{ - 5t}   }

FINAL ANSWER

\displaystyle \sf{   y=   A {e}^{5t}  +  B {e}^{ - 5t}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Similar questions