Math, asked by chaitanyazade5718, 9 months ago

If e^ax cosy is harmonic then a is

Answers

Answered by MaheswariS
11

\textbf{Given:}

f(x,y)=e^{ax}\,cosy\,\text{is harmonic}

\textbf{To find:}

\text{The value of a}

\textbf{Solution:}

\boxed{\textbf{A function is called harmonic when}\,\bf\dfrac{{\partial}^2f}{{\partial}x^2}+\dfrac{{\partial}^2f}{{\partial}y^2}=0}

f=e^{ax}\,cosy

\dfrac{{\partial}f}{{\partial}x}=a\,e^{ax}\,cosy

\dfrac{{\partial}^2f}{{\partial}x^2}=a^2\,e^{ax}\,cosy

\dfrac{{\partial}f}{{\partial}y}=e^{ax}\,(-siny)

\dfrac{{\partial}^2f}{{\partial}y^2}=-e^{ax}\,cosy

\text{Since $f$ is harmonic, we have}

\dfrac{{\partial}^2f}{{\partial}x^2}+\dfrac{{\partial}^2f}{{\partial}y^2}=0

\implies\,a^2\,e^{ax}\,cosy+(-e^{ax}\,cosy)=0

\implies\,e^{ax}\,cosy(a^2-1)=0

\implies\,a^2-1=0

\implies\,a^2=1

\implies\,a=\pm\,1

\textbf{Answer:}

\textbf{The value of 'a' are $\pm\,1$}

Similar questions