Math, asked by StrongGirl, 9 months ago

If e denotes the eccentricity of the hyperbola, then which of the following statements
is/are TRUE?

Attachments:

Answers

Answered by amansharma264
5

ANSWER.

=> option [ A ] and [ D ] is correct answer.

EXPLANATION.

 \sf : \implies \:  let \: a \: and \: b \: are \: real \: positive \: number \\  \\ \sf : \implies \: a > 1 \:  \: and \:  \:  \: b < a \:  \\  \\ \sf : \implies \: point \: p \: lies \: on \: quadrant \: that \: lies \: on \: hyperbola \:  \\  \\ \sf : \implies \:  \frac{ {x}^{2} }{ {a}^{2} } -  \frac{ {y}^{2} }{ {b}^{2} } = 1

\sf : \implies \: point \: p \: ( \: a \:  \sec( \theta)  , \: b \:  \tan( \theta) ) \\  \\ \sf : \implies \: equation \:  \: are \:  =  \frac{x x_{1}}{ {a}^{2} }  -  \:  \frac{y y_{1} }{ {b}^{2} }  = 1 \\  \\ \sf : \implies \:  \frac{x \sec( \theta) }{a}  -  \frac{y \tan( \theta) }{b}  = 1 \\  \\ \sf : \implies \:  \frac{ \sec( \theta) }{a} = 1 \\  \\  \sf : \implies \: a \:  =  \sec( \theta)

\sf : \implies \:  \dfrac{b \sec( \theta) }{a \tan( \theta) }  = 1 \\  \\ \sf : \implies \: b \:  =  \tan( \theta) \\  \\  \sf : \implies \: eccentricity \: of \: a \: hyperbola \\  \\ \sf : \implies \:  {e}^{2}  = 1 +  \frac{ {b}^{2} }{ {a}^{2} }  \\  \\ \sf : \implies \:  \:  {e}^{2}  = 1 +  \frac{ \tan {}^{2} ( \theta) }{ \sec {}^{2} ( \theta) }

\sf : \implies \:  {e}^{2}  =  1 +  \sin {}^{2} ( \theta)  \\  \\ \sf : \implies \: range \: of \:  {e}^{2}  \:  = (1 , 2) \\  \\  \sf : \implies \: 1 <  {e}^{2}  < 2 \\  \\ \sf : \implies \: 1 < e <  \sqrt{2}

\sf : \implies \: slope \: of \: normal \:  =  - 1 \\  \\ \sf : \implies \: equation \: of \: normal \:  \implies \: (y -  y_{1}) = m(x -  x_{1}) \\  \\ \sf : \implies \: (y -  \tan {}^{2} \theta)  =  - 1(x -  \sec {}^{2}  \theta)  \\  \\ \sf : \implies \: y + x =  \sec {}^{2} ( \theta)  +  \tan {}^{2} ( \theta)

\sf : \implies \: put \: y \:  = 0 \:  \: coordinates \: are \\  \\ \sf : \implies \: ( \sec {}^{2}  \theta +  \tan {}^{2}  \theta,0) \\  \\ \sf : \implies \: base \:  = \sec {}^{2}  \theta +  \tan {}^{2}  \theta \:  - 1 \\  \\ \:  \: \sf : \implies \: height \:  =  \tan {}^{2} ( \theta)

\sf : \implies \: area \: of \:  \triangle \:  =  \dfrac{1}{2}   \times base \times height \\  \\ \sf : \implies \:  \frac{1}{2}  \times  \tan {}^{2} \theta( \sec {}^{2} \theta +  \tan {}^{2}  \theta - 1)  \\  \\  \sf : \implies \:  \frac{1}{2}  \times  \tan {}^{2}  \theta \: ( \tan {}^{2}  \theta +  \tan {}^{2}  \theta) \\  \\ \sf : \implies \: \tan {}^{4}  \theta \implies \:  \Delta \:  =  {b}^{4}


abhi178: nicely explained.
Similar questions