Math, asked by lion7979, 5 months ago

If e^(x+y)=y^(x) then (dy)/(dx)=?

no spam❌❌​

Answers

Answered by kaushik05
12

  \huge\mathfrak{solution}

 \star \:  {e}^{x + y}  =  {y}^{x}

Take log both sides :

 \implies \:  log( {e})^{x + y}  =  log(y)  {}^{ x }  \\  \\  \implies \: (x + y)  log(e)  = x log(y)  \\  \\  \implies \: x + y = x log( y)

Now , differentiate w.r.t x both sides ,

 \implies \:  \:  \frac{d}{dx} (x + y) =  \frac{d}{dx} (x \:  log(y) ) \\  \\  \implies \: 1 +  \frac{dy}{dx}  = x  \frac{d}{dx}  log(y)  +  log(y)  \frac{d}{dx} x \\  \\  \implies \: 1 +  \frac{dy}{dx}  = x( \frac{1}{y} ) \frac{dy}{dx}  +  log(y) (1) \\  \\  \implies \:  \frac{dy}{dx} (1 -  \frac{x}{y} ) =  log(y)  - 1 \\  \\  \implies \:  \frac{dy}{dx}  =  \frac{y( log(y) - 1) }{y - x}


Anonymous: Nice :)
kaushik05: Thnku :)
Anonymous: Great! Kaushik :D
kaushik05: Thanks :)
Answered by Anonymous
7

Answer:

Correct Question:-

If \:  {e}^{x+y}  = xy \:   \:  \: then \:  \frac{dy}{dx} =?

Solution:-

 log \:  {e}^{(x+y)}  = log \: x.y \\ (x+y) \: log \: e=log \: x.y \\ x+y=log \: x+log \: y \\ 1+ \frac{dy}{dx}  =  \frac{1}{x}  +  \frac{1}{y}  \:  \frac{dy}{dx}  \\  \frac{dy}{dx}  -  \frac{1}{y}  \:  \frac{dy}{dx} = \frac{1}{x}  - 1 \\  \frac{dy}{dx} (1- \frac{1}{y} )= (\frac{1}{x} -1) \\  \frac{dy}{dx} =( \frac{y - 1}{y} )=( \frac{1-x}{x} ) \\  \frac{dy}{dx} = (\frac{y}{y-1} ) (\frac{1-x}{x} ) \\  \frac{dy}{dx} = \frac{y}{x} ( \frac{1-x}{y-1} )

Similar questions