If e1 and e2 are two unit vectors and theta is the angle between them then costheta/2
Answers
e1 and e2 are two unit vectors and θ is the angle between them.
taking dot product of e1 and e2.
so, e1.e2 = |e1|.|e2|cosθ
⇒e1.e1 = cosθ
[ |e1| = |e2| = 1 as e1 and e2 are unit vectors ]
we know, cos2x = 2cos²x - 1
so, cosθ = 2cos²(θ/2) - 1 = e1.e2
⇒2cos²(θ/2) = e1.e2 + 1
⇒cos²(θ/2) = (e1.e2 + 1)/2
⇒cos(θ/2) = √{(e1.e2 + 1)/2}
hence, cos(θ/2) = √{(e1.e2 + 1)/2}
Step-by-step explanation:
E1 and e2 are two unit vector
angle between them = ∅
we know,
| A - B | = √(| A|² +| B|² - 2|A||B|.cos∅ )
use this ,
|e1 - e2 | =√ ( |e1|² +| e2|² - 2|e1|.|e2|cos∅)
here , e1 and e2 unit vectors
so, |e1 | = 1
|e2 | = 1
|e1 - e2 | = √( 1² + 1² -2.1.1 cos∅)
= √( 2 - 2cos∅)
= √2(1 - cos∅)
= √2×2sin²∅/2
=2sin∅/2
hence, | e1 -e2 | = 2sin∅/2
sin∅/2 = 1/2 | e1 - e2 |
hence, proved ///
[ note :- ( 1 - cos∅) = 2sin²∅/2]
4.6