Math, asked by bhavnad7838, 6 months ago

If each of u ,v ,w a function of variables x,y,z then the jacobian δ(u,v,w)/ δ(x,y,z) is determinant of order............

Answers

Answered by pulakmath007
10

If each of u ,v ,w a function of variables x , y , z then the jacobian δ(u,v,w)/ δ(x,y,z) is determinant of order 3

Given :

Each of u , v , w a function of variables x , y , z

To find :

The order of the determinant for the jacobian δ(u,v,w)/ δ(x,y,z)

Solution :

Step 1 of 2 :

Define Jacobian

Here each of u ,v ,w a function of variables x , y , z

Then the Jacobian is defined as below

 \displaystyle \sf{ =  \frac{ \partial (u,v,w)}{ \partial (x,y,z)} }

 = \displaystyle \begin{vmatrix}  \frac{ \partial u}{ \partial x}  & \frac{ \partial u}{ \partial y} & \frac{ \partial u}{ \partial z}\\ \\  \frac{ \partial v}{ \partial x}  & \frac{ \partial v}{ \partial y} & \frac{ \partial v}{ \partial z} \\ \\ \frac{ \partial w}{ \partial x}  & \frac{ \partial w}{ \partial y} & \frac{ \partial w}{ \partial z} \end{vmatrix}

Step 2 of 2 :

Find order of the determinant for the jacobian

We see that for the above Jacobian

Number of rows = 3

Number of columns = 3

Hence order of the determinant for the jacobian δ(u,v,w)/ δ(x,y,z) is 3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. A is a square matrix of order 3 having a row of zeros, then the determinant of A is 

https://brainly.in/question/28455441

2. If [1 2 3] B = [34], then the order of the matrix B is

https://brainly.in/question/9030091

Similar questions