If each side of a triangle is doubled, find the % increase in the area of the triangle
Answers
Answer:
Step-by-step explanation:
![](https://hi-static.z-dn.net/files/df2/250f4b24d20912bd1f261a9592386bf2.jpg)
Answer:
Area is increased by 300%.
Step-by-step explanation:
If that triangle is a right angled triangle.
= > Original area = 1 / 2 x base x height { From properties }
When sides are doubled :
= > New area = 1 / 2 x 2base x 2height
= > New area = 2 x base x height
Increase % : ( 2 x height x base ) / ( 1 / 2 x base x height ) x 100%
= > 2 / ( 1 / 2 ) x 100%
= > 4 x 100%
= > 400%
Hence the area is increased by 400%.
If that triangle is not right angled triangle :
Let the sides are 2a , 2b and 2c.
= > Semi-Perimeter = ( 2a + 2b + 2c ) / 2
= > Semi-Perimeter = a + b + c
By Using Heron's Formula :
= > Area = √[ ( 2a + 2b + 2c )( 2a + 2b + 2c - 2a )( 2a + 2b + 2c - 2b )( 2a + 2b + 2c - 2c ) ]
= > Area = √{ ( 2a + 2b + 2c )( 2b + 2c )( 2a + 2c )( 2a + 2b ) }
= > Area = √{ 2( a + b + c )2( b + c )2( a + c )2( a + b ) }
= > Area = 4√{ ( a + b + c )( b + c )( a + c )( a + b ) }
When sides are doubled : Sides are 4a , 4b and 4c.
= > Semi-Perimeter = ( 4a + 4b + 4c ) / 2
= > Semi-Perimeter = 2a + 2b + 2c
By Using Heron's Formula :
= > Area = √[ ( 4a + 4b + 4c )( 4a + 4b + 4c - 4a )( 4a + 4b + 4c - 4b )( 4a + 4b + 4c - 4c ) ]
= > Area = √{ ( 4a + 4b + 4c )( 4b + 4c )( 4a + 4c )( 4a + 4b ) }
= > Area = √{ 4( a + b + c )4( b + c )4( a + c )4( a + b ) }
= > Area = 16√{ ( a + b + c )( b + c )( a + c )( a + b ) }
Thus,
Increase : 16√{ ( a + b + c )( b + c )( a + c )( a + b ) } - 4√{ ( a + b + c )( b + c )( a + c )( a + b ) }
Increase : 12√{ ( a + b + c )( b + c )( a + c )( a + b ) }
Increase % : [ 12√{ ( a + b + c )( b + c )( a + c )( a + b ) } ] / [ 4√{ ( a + b + c )( b + c )( a + c )( a + b ) } ] x 100%
Increase % : 3 x 100%
Increase % : 300%
Hence the area is increased by 300 %.