If each side of a triangle is tripled, then find the ratio of areas of the new
triangle thus formed and the given triangle
Answers
Answer:
9:1
Step-by-step explanation:
Let the sides be a,b,c respectively
Perimeter 2s = a + b + c
Semi-perimeter, s = (a+b+c)/2
Using Heron's formula:
Area of the triangle A = √s(s−a)(s−b)(s−c)
Now, if the sides are tripled: 3a, 3b, 3c
Let s' be the semi-perimeter.
2s' = 3a + 3b + 3c
s' = 3(a + b + c)/2
or s' = 3s
Area of the triangle, A' = √s′(s′−3a)(s′−3b)(s′−3c)
A' = √(3s)(3s−3a)(3s−3b)(3s−3c)
A' = √s(s−a)(s−b)(s−c)
A' = 9√s(s−a)(s−b)(s−c)
A' = 9A
A':A = 9:1
Ratio of area of the new triangle and old triangle is 9:1
Answer:
9:1
Step-by-step explanation:
Let the sides be a,b,c respectively
Perimeter 2s = a + b + c
Semi-perimeter, s = (a+b+c)/2
Using Heron's formula:
Area of the triangle A = √s(s−a)(s−b)(s−c)
Now, if the sides are tripled: 3a, 3b, 3c
Let s' be the semi-perimeter.
2s' = 3a + 3b + 3c
s' = 3(a + b + c)/2
or s' = 3s
Area of the triangle, A' = √s′(s′−3a)(s′−3b)(s′−3c)
A' = √(3s)(3s−3a)(3s−3b)(3s−3c)
A' = √3^{4}3
4
s(s−a)(s−b)(s−c)
A' = 9√s(s−a)(s−b)(s−c)
A' = 9A
A':A = 9:1
Ratio of area of the new triangle and old triangle is 9:1
PLEASE SEND THANKS AND FOLLOW ME AND MARK BRAINLY ANSWER