Math, asked by sabitanayak118, 3 months ago

if each side of triangle is doubled the find the ratio of area of new traingle then formed and the given triangle​

Answers

Answered by ShírIey
106

AnswEr :

Let a, b and c are the sides of the triangle.

We'll use Heron's formula to find out the area of the triangle.

━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀

S E M I – P E R I M E T E R :

\bf{\dag}\;\boxed{\sf{Semi \; Perimeter = \bigg(\dfrac{Sum\;of\;all\;sides}{2}\bigg)}}

◗ As Per given Condition, when the sides of the triangle is doubled then Let the semi perimeter of the new Triangle formed be s'. Therefore :

:\implies\sf s' =  \dfrac{2a + 2b + 2c}{2}\\\\\\:\implies\bf 2s' = a + b + c

\rule{300}2

A R E A :

(I) Area of old triangle is :

⠀⠀

\sf A' = \sqrt{s(s - a)(s - b)(s - c)}

⠀⠀

(II) Calculating Area of the triangle new formed :

⠀⠀

\bf{\dag}\:\boxed{\sf{Area_{\triangle} = \sqrt{s'(s' - a)(s' - b)(s' - c)}}}

⠀⠀

\longrightarrow\sf Area_{\triangle} = \sqrt{s'(s' - 2a)(s' - 2b)(s' - 2c)} \\\\\\\longrightarrow\sf Area_{\triangle} = \sqrt{2s(2s - 2a)(2s - 2b) (2s - 2c)}  \\\\\\\longrightarrow\sf Area_{\triangle} = \sqrt{16s(s - a)(s - b)(s - c)} \\\\\\\longrightarrow\sf Area_{\triangle} = \sqrt{4 \times 4s(s - a) (s - b) (s - c)} \\\\\\\longrightarrow\sf Area_{\triangle} = 4\sqrt{s(s - a)(s - b)(s - c)} \\\\\\\longrightarrow{\underline{\boxed{\sf Area_{\triangle} = 4 \times A'}}}

⠀⠀

\therefore{\underline{\textsf{Hence,\; ratio\;of\;area\;of\; the\;new\;triangle\;formed\;is\; \textbf{4:1}.}}}

Answered by Anonymous
55

Step-by-step explanation:

\huge\sf\red{Answér}

Semi  \: perimeter  \: of  \: the  \: triangle =  \frac{a + b + c}{2}

Area  \: of \:  the  \: traiangle = \:  \sqrt{s(s - a)(s - b)(s - c)}

Sides \: of \: the \: new \: triangle \: will \: be \: 2a,2b,2c

Semi \: primeter \: of \: new \: traiangle \:  = a + b + c = 2s

Area \: of \: new \: triangle \:  =  \sqrt{2s(2s - 2a)(2s - 2b)(2s - 2c)}

 = 4 \sqrt{s(s - a)(s - b)(s - c) = 4 \times area \: of \: the \: triangle}

Hence Ratio is 4:1

\small\bf\orange{Answered\:by\: ITZHEART29}

Similar questions