Math, asked by sadshawonoo8366, 1 year ago

If equal to 4-under root 15, find the value of xsq + 1/xsq

Answers

Answered by ArchitectSethRollins
0
Hi friend ✋✋✋✋
--------------
Your answer
--------------------

Given that : - x = 4 - √5

To find : - x² + 1/x² = ?

Now,
----------

x = 4 -  \sqrt{15}  \\  \\  \frac{1}{x}  =  \frac{1}{4 -  \sqrt{15} }  \\ rationalising \: the \: denominator \\  \\  \frac{1}{x}  =  \frac{1}{(4 -  \sqrt{15} )}  \times  \frac{(4 +  \sqrt{15}) }{(4 +  \sqrt{15}) }  \\  \\  =  >  \frac{1}{x}  =  \frac{4 +  \sqrt{15}  }{(4) {}^{2}  - ( \sqrt{15} ) {}^{2} }  \\  \\  =  >  \frac{1}{x}  =  \frac{4 +  \sqrt{15} }{16 - 15 } \\  \\  \frac{1}{x}  =  \frac{4 +   \sqrt{15}  }{1}  = 4 +  \sqrt{15}
Then,
----------

x +  \frac{1}{x}  = 4 -  \sqrt{15}  + 4  +  \sqrt{15}  \\  \\  =  > x +  \frac{1}{x}  = 8 \\  \\ (x +  \frac{1}{x} ) {}^{2}  = (8) {}^{2}  \\  \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 = 64 \\  \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} }  = 64 - 2 \\  \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} } =  62
HOPE IT HELPS
Similar questions