Math, asked by Aparna6036, 10 months ago

If equation of circle at centre ( acos alpha ,Asin alpha) with radius a is

Answers

Answered by Anonymous
2

Equation of a circle

If ( h, k ) are the coordinates of the centre of circle with radius ' r ' units the the Equation of circle would be

 \quad \quad  \bf  {(x - h)}^{2}  +  {(y - k)}^{2}  =  {r}^{2}

Given :

Coordinates of the centre of the circle ( h, k) = ( a cos α, a sin α )

  • h = a cos α
  • k = a sin α

Radius of the circe ( r ) = a units

Substitute the values in formula

 \sf \Rightarrow  {(x - acos \alpha )}^{2}  +  {(y - asin \alpha )}^{2}  =  {a}^{2}

 \sf \Rightarrow  {x}^{2} +  {a}^{2}   cos^{2} \alpha  -2(x)(acos  \alpha )  +   {y}^{2} +  {a}^{2}sin ^{2}   \alpha  - 2(x)(asin \alpha ) =  {a}^{2}

 \sf \Rightarrow  {x}^{2} +  {a}^{2}   (cos^{2} \alpha  + sin^{2}  \alpha )-2xacos  \alpha+   {y}^{2} - 2xasin \alpha =  {a}^{2}

 \sf \Rightarrow  {x}^{2} +  {a}^{2}   -2xacos  \alpha+   {y}^{2} - 2xasin \alpha =  {a}^{2}

 \sf \Rightarrow  {x}^{2}  + y^2 = 2xacos  \alpha+ 2xasin \alpha

Similar questions