If equilibrium constant is given and partial pressure of one is given how to find other gas partial pressure
Answers
Answered by
0
m Kc.
Google ClassroomFacebookTwitter
Email
Key points
The equilibrium constant, K_\text pKpK, start subscript, p, end subscript, describes the ratio of product and reactant concentrations at equilibrium in terms of partial pressures.
For a gas-phase reaction, \text{aA}(g)+\text{bB}(g) \leftrightharpoons \text{cC}(g)+\text{dD}(g)aA(g)+bB(g)⇋cC(g)+dD(g), the expression for K_\text pKpK, start subscript, p, end subscript is
K_\text p =\dfrac{(\text P_{\text C})^c (\text P_{\text D})^d}{(\text P_{\text A})^a (\text P_{\text B})^b}Kp=(PA)a(PB)b(PC)c(PD)dK, start subscript, p, end subscript, equals, start fraction, left parenthesis, P, start subscript, C, end subscript, right parenthesis, start superscript, c, end superscript, left parenthesis, P, start subscript, D, end subscript, right parenthesis, start superscript, d, end superscript, divided by, left parenthesis, P, start subscript, A, end subscript, right parenthesis, start superscript, a, end superscript, left parenthesis, P, start subscript, B, end subscript, right parenthesis, start superscript, b, end superscript, end fraction
K_\text pKpK, start subscript, p, end subscript is related to the equilibrium constant in terms of molar concentration, K_\text cKcK, start subscript, c, end subscript, by the equation below:
K_\text p = K_\text c(\text{RT})^{\Delta \text n}Kp=Kc(RT)ΔnK, start subscript, p, end subscript, equals, K, start subscript, c, end subscript, left parenthesis, R, T, right parenthesis, start superscript, delta, n, end superscript
where \Delta \text nΔndelta, n is
\Delta \text n=\text{mol of product gas}-\text{mol of reactant gas}Δn=mol of product gas−mol of reactant ga
Google ClassroomFacebookTwitter
Key points
The equilibrium constant, K_\text pKpK, start subscript, p, end subscript, describes the ratio of product and reactant concentrations at equilibrium in terms of partial pressures.
For a gas-phase reaction, \text{aA}(g)+\text{bB}(g) \leftrightharpoons \text{cC}(g)+\text{dD}(g)aA(g)+bB(g)⇋cC(g)+dD(g), the expression for K_\text pKpK, start subscript, p, end subscript is
K_\text p =\dfrac{(\text P_{\text C})^c (\text P_{\text D})^d}{(\text P_{\text A})^a (\text P_{\text B})^b}Kp=(PA)a(PB)b(PC)c(PD)dK, start subscript, p, end subscript, equals, start fraction, left parenthesis, P, start subscript, C, end subscript, right parenthesis, start superscript, c, end superscript, left parenthesis, P, start subscript, D, end subscript, right parenthesis, start superscript, d, end superscript, divided by, left parenthesis, P, start subscript, A, end subscript, right parenthesis, start superscript, a, end superscript, left parenthesis, P, start subscript, B, end subscript, right parenthesis, start superscript, b, end superscript, end fraction
K_\text pKpK, start subscript, p, end subscript is related to the equilibrium constant in terms of molar concentration, K_\text cKcK, start subscript, c, end subscript, by the equation below:
K_\text p = K_\text c(\text{RT})^{\Delta \text n}Kp=Kc(RT)ΔnK, start subscript, p, end subscript, equals, K, start subscript, c, end subscript, left parenthesis, R, T, right parenthesis, start superscript, delta, n, end superscript
where \Delta \text nΔndelta, n is
\Delta \text n=\text{mol of product gas}-\text{mol of reactant gas}Δn=mol of product gas−mol of reactant ga
Similar questions