if f(0)=12,f(3)=6 and f(4)=8,then linear interpolation function f(x)=?
Answers
Answered by
0
Linear interpolation function f(x) = x²-5x+12.
Given,
f(0)=12
f(3)=6
f(4)=8
To find,
Linear interpolation function f(x)
Solution:
By the given conditions,
- ω(x) = ( x – 0 ) ( x – 3 ) ( x – 4 )
- ω(x) = x(x – 3)(x – 4 )
It gives,
- ω'(x) = (x – 3)(x – 4 ) + x(x – 4 ) + x(x – 3)
- ω'(0) = 12
- ω'(3) = – 3
- ω'(4) = 4
Hence, the required polynomial,
- f(x) = ω(x) Σ f(xr) / (x-xr) ω'(xr)
- f(x) = x(x-3) (x-4) { [ 12/ 12(x-0) ] + [ 6/-3(x-3) ] + [8/4(x-4) ]}
- f(x) = x(x-3) (x-4) { [ 1/x ] - [ 2/(x-3) ] + [2/(x-4) ]}
- f(x) = x(x-3) (x-4) - 2x (x-4) + 2x(x-3)
- f(x) = x²-5x+12
Linear interpolation function f(x) = x²-5x+12.
#SPJ1
Answered by
0
Answer:
linear interpolation function f(x)= x²-5x+12
Step-by-step explanation:
Given :
f(0)=12,
f(3)=6
and f(4)=8
To Find:
linear interpolation function f(x)=?
Solution :-
here it is given that
f(0)=12,
f(3)=6
and f(4)=8
Now , ω(x)
= (x-0)(x-3)(x-4)
= x(x-3)(x-4)
∴ω'(x)
=(x-3)(x-4)+x(x-4)+x(x-3)
ω'(0) = 12
ω'(3) = -3
ω'(4) = 4
Now the required polynomial
= ω(x)∑
= x(x-3)(x-4)[
= x(x-3)(x-4)
=(x-3)(x-4)-2x(x-4)+2x(x-3)
= x²-5x+12
linear interpolation function f(x)= x²-5x+12
#spj1
Similar questions
English,
1 month ago
Math,
2 months ago
Accountancy,
9 months ago
Social Sciences,
9 months ago
Biology,
9 months ago