Math, asked by vvbnmittalp8bd27, 1 year ago

if f(1) = 1 , f(n+1) = 2f(n) + 1 ,n >= 1 find f(n)

Attachments:

Answers

Answered by MaheswariS
13

Answer:

\bf\,f(n)=2^n-1

Step-by-step explanation:

\textbf{Given:}

f(n+1)=2[f(n)+1]

=2[2f(n-1)+1]+1

=2^2f(n-1)+2+1

=2^2[2f(n-2)+1]+2+1

=2^3f(n-2)+2^2+2+1

\text{Proceeding like this, we get}

f(n+1)=2^n\,f(n-(n-1))+2^{n-1}+2^{n-2}+.....+1

=2^n\,f(1)+2^{n-1}+....+1

=2^n(1)+2^{n-1}+2^{n-2}+...2+1

=1+2+2^2+...2^n

\text{This is a G.P with a=1 and r=2 containing n+1 terms}

=\frac{1(2^{n+1}-1)}{2-1}

f(n+1)=2^{n+1}-1

\implies\,2f(n)+1=2^{n+1}-1

\implies\,2f(n)=2^{n+1}-2

\implies\,\boxed{\bf\,f(n)=2^n-1}

Similar questions