If f(1)=2 and f(n+1) = f(n)^2+4 then find the value of f(3).
Answers
Answered by
0
Answer:
Given that, f(1)=1, f(2n)=f(n), f(2n+1)={f(n)}
2
−2
Now, f(2)=f(2×1)=f(1)=1,
f(3)=f(2×1+1)
={f(1)}
2
−2=1−2=−1,
f(4)=f(2×2)=f(2)=1
f(5)=f(2×2+1)
={f(2)}
2
−2=1−2=−1
and so on
Now, f(1)+f(2)+⋯+f(25)=1+1−1+1−1+⋯+(−1)=1
Similar questions