If f(1) = 2,f(2) = 4 and f(4) = 16,what is the value of f(3)using lagrange's interpolation formula?
Answers
Answered by
0
Given : f(1) = 2,f(2) = 4 and f(4) = 16
To find : value of f(3)using lagrange's interpolation formula
Solution:
f(1) = 2 => x₀ = 1 y₀ = 2
f(2) = 4 => x₁ = 2 y₁ = 4
f(4) = 16 => x₂ = 4 y₂ = 16
f(3) => x = 3
Using lagrange's interpolation formula
y₀ (x - x₁)(x - x₂) / (x₀ - x₁)(x₀ - x₂) + y₁ (x - x₀)(x - x₂) / (x₁ - x₀)(x₁ - x₂) + y₂ (x - x₀)(x - x₁)/(x₂ - x₀) (x₂ - x₁)
= 2(3 - 2)(3 - 4)/(1 - 2)(1 - 4) + 4(3 - 1)(3 - 4)/(2 - 1)(2-4) + 16(3 - 1)(3 - 2)/(4 -1)(4 - 2)
= 2(1)(-1)/(-1)(-3) + 4(2)(2)/(-1)(-2) + 16(2)(1)/(3)(2)
= -2/3 + 8 + 16/3
= 14/3 + 8
= (14 + 24)/3
= 38/3
f(3) = 38/3
Learn more:
Using Lagrange's Mean Value theorem find a point on the curve y ...
https://brainly.in/question/119484
Similar questions