Math, asked by kanethia123, 11 months ago

if f(1+x)=x²+1 , then f(2-h) is​

Answers

Answered by knjroopa
50

Step-by-step explanation:

Given If f(1+x) = x²+1 , then f(2-h) is

  • Given f (1 + x) = x^2 + 1 ---------------1
  •      Let 1 + x = y
  • So x = y – 1
  • Now putting the value of x in eqn 1
  • Therefore f(1 + y – 1) = (y – 1)^2 + 1
  • So f (y) = (y – 1)^2 + 1
  • Now putting y = 2 – h we get
  • Now  f (2 – h) = (2 – h – 1)^2 + 1
  •                       = (1 – h)^2 + 1
  • We know that (a – b)^2 = a^2 + b^2 – 2ab
  •                      = 1 + h^2 – 2 h + 1

                    = h^2 - 2h + 2

 # Answer with quality

# Bal

Answered by yashsingh8704
8

Answer:

Step-by-step explanation:

Given If f(1+x) = x²+1 , then f(2-h) is

Given f (1 + x) = x^2 + 1 ---------------1

    Let 1 + x = y

So x = y – 1

Now putting the value of x in eqn 1

Therefore f(1 + y – 1) = (y – 1)^2 + 1

So f (y) = (y – 1)^2 + 1

Now putting y = 2 – h we get

Now  f (2 – h) = (2 – h – 1)^2 + 1

                     = (1 – h)^2 + 1

We know that (a – b)^2 = a^2 + b^2 – 2ab

                    = 1 + h^2 – 2 h + 1

                   = h^2 - 2h + 2

Similar questions