Math, asked by saiganeshdrona, 1 month ago

if f(2tanx/1+tan^2x)=(1+cos2x)(sec^2x+2tanx)/2 then f(1)=​

Answers

Answered by pulakmath007
3

SOLUTION

GIVEN

 \displaystyle \sf{f \bigg(  \frac{2 \tan x}{1 +  { \tan}^{2} x} \:\bigg) =  \frac{(1 +  {\cos}2x)( { \sec}^{2}x + 2 \tan x )}{2}  }

TO DETERMINE

The value of f(1)

EVALUATION

 \displaystyle \sf{f \bigg(  \frac{2 \tan x}{1 +  { \tan}^{2} x} \:\bigg) =  \frac{(1 +  {\cos}2x)( { \sec}^{2}x + 2 \tan x )}{2}  }

 \displaystyle \sf{ \implies \: f \bigg(   \sin 2x \:\bigg) =  \frac{(2 {\cos}^{2} x)( { \sec}^{2}x + 2 \tan x )}{2}  }

 \displaystyle \sf{ \implies \: f \bigg(   \sin 2x \:\bigg) =   {\cos}^{2} x( { \sec}^{2}x + 2 \tan x ) }

 \displaystyle \sf{ \implies \: f \bigg(   \sin 2x \:\bigg) =   {\cos}^{2} x.{ \sec}^{2}x + {\cos}^{2} x. 2 \tan x }

 \displaystyle \sf{ \implies \: f \bigg(   \sin 2x \:\bigg) =   {\cos}^{2} x. \frac{1}{ {\cos}^{2} x}  +2 {\cos}^{2} x.  \frac{ \sin x}{ \cos x} }

 \displaystyle \sf{ \implies \: f \bigg(   \sin 2x \:\bigg) = 1  +2 {\cos}^{} x.   \sin x}

 \displaystyle \sf{ \implies \: f \bigg(   \sin 2x \:\bigg) = 1   +\sin 2x }

Putting y = sin 2x we get

 \displaystyle \sf{  \: f ( y \:) = 1  + y }

Putting y = 1 we get

 \displaystyle \sf{ \implies \: f ( 1 \:) = 1  + 1 }

 \displaystyle \sf{ \implies \: f ( 1 \:) = 2}

FINAL ANSWER

 \displaystyle \sf{ \: f ( 1 \:) = 2}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1.If 1/2 is a root of the quadratic equation x²-mx-5/4=0 , then the value of m is?

https://brainly.in/question/21062028

2.Find the roots of the quadratic equation 6x2 +5x + 1 =0 by method of completing the squares.

https://brainly.in/question/30446963

3. Write a quadratic equation whose root are -4 and -5

https://brainly.in/question/24154410

Similar questions