If f(a)=(sin a/l+cos a) square then f'(a) =
Answers
Correct question :
If f ( a ) = ( sin a / 1 + cos a )² then f' ( a ) =
Answer:
f' ( a ) = [ 2 sin a ( sin² a + cos² a + cos a ) ] / [ ( 1 + cos a )³ ]
Step-by-step explanation:
Given :
f ( a ) = ( sin a / 1 + cos a )²
Diff. w.r.t. a :
Using chain rule here :
We know :
( sin x )' = cos x
( cos x )' = - sin x
f' ( a ) = 2 ( sin a / 1 + cos a ) ( sin a / 1 + cos a )'
= > f' ( a ) = 2 ( sin a / 1 + cos a ) ( ( 1 + cos a ( sin a )' - sin a ( 1 + cos a )' ) / ( ( 1 + cos a )²
= > f' ( a ) = 2 ( sin a ) ( ( 1 + cos a ( cos a ) - sin a ( 1 + cos a )' ) / ( ( 1 + cos a )³
= > f' ( a ) = 2 ( sin a ) ( ( 1 + cos a ( cos a ) - sin a ( 0 - sin a ) ) / ( 1 + cos a )³
= > f' ( a ) = [ 2 ( sin a ) ( ( 1 + cos a ( cos a ) + sin a ( sin a ) ) ] / [ ( 1 + cos a )³ ]
= > f' ( a ) = [ 2 ( sin a ) ( ( cos a + cos² a + sin² a ) ] / [ ( 1 + cos a )³ ]
= > f' ( a ) = [ 2 ( sin a ) ( ( sin² a + cos² a + cos a ) ] / [ ( 1 + cos a )³ ]
= > f' ( a ) = [ 2 sin a ( sin² a + cos² a + cos a ) ] / [ ( 1 + cos a )³ ]
Hence we get required answer!