If f (cx - az, cy - bz) = 0 where a, b,c are constants and z is a function of x and y, find the value of a x and a y
Answers
Answered by
0
Answer:
1
Step-by-step explanation:
⎡
−1
c
b
c
−1
a
b
a
−1
⎦
⎥
⎥
⎤
⎣
⎢
⎢
⎡
x
y
z
⎦
⎥
⎥
⎤
=
⎣
⎢
⎢
⎡
0
0
0
⎦
⎥
⎥
⎤
where A=
⎣
⎢
⎢
⎡
−1
c
b
c
−1
a
b
a
−1
⎦
⎥
⎥
⎤
,X=
⎣
⎢
⎢
⎡
x
y
z
⎦
⎥
⎥
⎤
,B=
⎣
⎢
⎢
⎡
0
0
0
⎦
⎥
⎥
⎤
Since, x, y, z are not all zero, so for the system to be consistent
∣
∣
∣
∣
∣
∣
∣
∣
−1
c
b
c
−1
a
b
a
−1
∣
∣
∣
∣
∣
∣
∣
∣
=0
−1(1−a
2
)−c(−c−ab)+b(ac+b)=0
⇒a
2
+b
2
+c
2
+2abc=1
Similar questions
Computer Science,
9 hours ago
Physics,
9 hours ago
English,
9 hours ago
Hindi,
17 hours ago
Biology,
17 hours ago