Math, asked by TbiaSupreme, 1 year ago

If f: R—>R, f(x)=2x—3, then......,Select Proper option from the given options.
(a) f⁻¹(x)=1/2x-3
(b) f⁻¹(x)= x+3/2
(c) f⁻¹ does not exist
(d) f⁻¹(x)=3x-2

Answers

Answered by MaheswariS
0

Answer:

option (b) is correct

Step-by-step explanation:

Given:

f:R-->R, f(x)=2x-3

clearly f is a bijective function.

So, we can find inverse of f

2x-3=y(say)

\implies\:2x=y+3

\implies\:x=\frac{y+3}{2}

Hence, inverse of f(x) is

\bf\:f^{-1}(x)=\frac{x+3}{2}

Answered by pulakmath007
11

\displaystyle\huge\red{\underline{\underline{Solution}}}

DEFINITION

INJECTIVE FUNCTION :

 \sf{A  \: function  \: f  :  A  \to B  \: is  \: said \:  to  \: be \:  injective \: if}

 \sf{For  \:  \: x_1 \ne x_2  \:   \: we \:  have \:  \:  f(x_1) \ne f(x_2)}

SURJECTIVE FUNCTION

 \sf{A  \: function  \: f  :  A  \to B  \: is  \: said \:  to  \: be \:  surjective}

if for every element y in the co-domain B there exists a pre-image x in domain set A such that y = f(x)

BIJECTIVE FUNCTION

 \sf{A  \: function  \: f  :  A  \to B  \: is  \: said \:  to  \: be \:  bijective}

if f is both injective and surjective

CALCULATION

 \sf{ f :  \mathbb{R} \to  \mathbb{R} \: } \: defined \: by \: f(x) = 2x - 3

CHECKING FOR INJECTIVE

 \sf{Let \:  \:  x_1, x_2 \in \mathbb{ R} \:  \:  with  \:  \: x_1 \ne \: x_2}

Now

 \sf{ f(x_1) \ne f(x_2)}  \:  \:  \: \: gives

 \sf {2x_1 - 3\ne 2x_2 - 3}

 \implies \:  \sf {2x_1 \ne 2x_2 }

 \implies \:  \sf {x_1 \: \ne  \: x_2 }

Hence f is injective

CHECKING FOR SURJECTIVE

 \sf{y  \in \:  \mathbb{R} \:  \:  ( Co - domain \:  \:  set) }

If possible let there exists an element x in domain set such that

 \sf{ \:  y = f(x)\: }

 \implies \sf{ \:  y = 2x - 3\: }

 \displaystyle \:  \implies \sf{ \:x =  \frac{y + 3}{2}  \: }

 \displaystyle \: \sf{As  \: y  \in \mathbb{R} \:   \: we  \: have \:  \: \:  \frac{y + 3}{2} \: \in \mathbb{R}  \: }

Hence f is surjective

Therefore f is bijective

 \sf{Hence \:  \:  {f}^{ - 1}  \:  \: exists}

 \sf{let \:  \:  {f}^{ - 1} (x) = y \:  \: }

 \implies \:  \sf{x  = f(y)\: }

 \implies \:  \sf{x  = 2y - 3\: }

 \displaystyle \:  \implies \sf{ \:y =  \frac{x + 3}{2}  \: }

 \displaystyle \:  \implies \sf{ \: {f}^{ - 1}  (x) =  \frac{x + 3}{2}  \: }

RESULT

 \sf{Hence \:  \:  {f}^{ - 1}  \:  \: exists} \:  \: and \:  \:  \displaystyle \: \sf{ \: {f}^{ - 1}  (x) =  \frac{x + 3}{2}  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Represent all possible one-one functions from the set A = {1, 2} to the set B = {3,4,5) using arrow diagram.

https://brainly.in/question/22321917

Similar questions